Glioma-associated cancer-initiating cells induce immunosuppression.
نویسندگان
چکیده
PURPOSE Glioblastoma multiforme is a lethal cancer that responds poorly to therapy. Glioblastoma multiforme cancer-initiating cells have been shown to mediate resistance to both chemotherapy and radiation; however, it is unknown to what extent these cells contribute to the profound immunosuppression in glioblastoma multiforme patients and if strategies that alter their differentiation state can reduce this immunosuppression. EXPERIMENTAL DESIGN We isolated a subpopulation of cells from glioblastoma multiforme that possessed the capacity for self-renewal, formed neurospheres in vitro, were capable of pluripotent differentiation, and could initiate tumors in vivo. The immune phenotype of these cells was characterized including the elaboration of immunosuppressive cytokines and chemokines by ELISA. Functional immunosuppressive properties were characterized based on the inhibition of T-cell proliferation and effector responses, triggering of T-cell apoptosis, and induction of FoxP3(+) regulatory T cells. On altering their differentiation state, the immunosuppressive phenotype and functional assays were reevaluated. RESULTS We found that the cancer-initiating cells markedly inhibited T-cell proliferation and activation, induced regulatory T cells, and triggered T-cell apoptosis that was mediated by B7-H1 and soluble Galectin-3. These immunosuppressive properties were diminished on altering the differentiation of the cancer-initiating cells. CONCLUSION Cancer-initiating cells contribute to tumor evasion of the immunosurveillance and approaches that alter the differentiation state may have immunotherapeutic potential.
منابع مشابه
Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK.
Control of the cancer stem/initiating cell population is considered key to realizing the long-term survival of glioblastoma patients. Recently, we demonstrated that FOXO3 activation is sufficient to induce differentiation of glioma-initiating cells having stem-like properties and inhibit their tumor-initiating potential. Here we identified metformin, an antidiabetic agent, as a therapeutic acti...
متن کاملGlioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein.
Although the concept of cancer stem cells or cancer-initiating cells had created a new paradigm for the treatment of malignant tumors, it remains unclear how cancer-initiating cells can be eradicated. We have previously reported that the transforming growth factor-β (TGF-β)-Sox4-Sox2 pathway is essential for glioma-initiating cells to retain their stemness, and inhibition of TGF-β signaling may...
متن کاملGlioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway.
Glioblastoma multiforme (GBM) is a lethal cancer that responds poorly to radiotherapy and chemotherapy. Glioma cancer-initiating cells have been shown to recapitulate the characteristic features of GBM and mediate chemotherapy and radiation resistance. However, it is unknown whether the cancer-initiating cells contribute to the profound immune suppression in GBM patients. Recent studies have fo...
متن کاملB7-H4(B7x)-Mediated Cross-talk between Glioma-Initiating Cells and Macrophages via the IL6/JAK/STAT3 Pathway Lead to Poor Prognosis in Glioma Patients.
PURPOSE The objective of this study was to evaluate clinical significance and immunosuppressive mechanisms of B7-H4 (B7x/B7S1), a B7 family member, in glioma. EXPERIMENTAL DESIGN B7-H4 levels in glioma tissue/cerebral spinal fluid (CSF) were compared between different grades of glioma patients. Survival data were analyzed with Kaplan-Meier to determine the prognostic value of B7-H4. Cytokines...
متن کاملInvestigation of Adhesion and Mechanical Properties of Human Glioma Cells by Single Cell Force Spectroscopy and Atomic Force Microscopy
Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2010